A Fuzzy Clustering Algorithm to Detect Planar and Quadric shapes
نویسندگان
چکیده
In this paper, we introduce a new fuzzy clustering algorithm to detect an unknown number of planar and quadric shapes in noisy data. The proposed algorithm is computationally and implementationally simple, and overcomes many of the drawbacks of the existing algorithms that have been proposed for similar tasks. Since the clustering is performed in the original image space, and since no features need to be computed, this approach is particularly suited for sparse data. The algorithm may also be used in pattern recognition applications.
منابع مشابه
Comparing Model-based Versus K-means Clustering for the Planar Shapes
In some fields, there is an interest in distinguishing different geometrical objects from each other. A field of research that studies the objects from a statistical point of view, provided they are invariant under translation, rotation and scaling effects, is known as the statistical shape analysis. Having some objects that are registered using key points on the outline...
متن کاملبررسی مشکلات الگوریتم خوشه بندی DBSCAN و مروری بر بهبودهای ارائهشده برای آن
Clustering is an important knowledge discovery technique in the database. Density-based clustering algorithms are one of the main methods for clustering in data mining. These algorithms have some special features including being independent from the shape of the clusters, highly understandable and ease of use. DBSCAN is a base algorithm for density-based clustering algorithms. DBSCAN is able to...
متن کاملFuzzy and Possibilistic Shell Clustering Algorithms and Their Application to Boundary Detection and Surface Approximation-Part I
AbstructTraditionally, prototype-based fuzzy clustering algorithms such as the Fuzzy C Means (FCM) algorithm have been used to find “compact” or “filled” clusters. Recently, there have been attempts to generalize such algorithms to the case of hollow or “shell-like” clusters, i.e., clusters that lie in subspaces of feature space. The shell clustering approach provides a powerful means to solve ...
متن کاملOPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM
This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...
متن کاملA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010